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The nonlinear periodic free oscillations of irrotational surface waves in a three- 
dimensional basin with a rectangular cross-section and finite depth are considered. 
A previous work by Verma 8z Keller (1962) has analysed the case when the linear 
natural frequencies are non-commensurate. For particular values of the parameters, 
however, strong internal resonance occurs (two natural frequencies are equal). 
Instead of the usual loss of stability and exchange of energy, it is found that the 
double eigenvalue generates a higher multiplicity of periodic solutions. Eight solution 
branches are found to be emitted by the double eigenvalues. It is also shown that 
perturbing the double eigenvalue results in a secondary bifurcation of periodic 
solutions. The direction of the branches for the multiple and secondary bifurcation 
changes with the depth. Finally i t  is shown that the formal solutions obtained are 
not uniformly valid and an additional expansion in the Boussinesq regime shows that 
the wave field changes type. One of the solutions in this regime is a field of 
three-dimensional cnoidal standing waves. 

1. Introduction 
In this paper the nonlinear periodic free oscillations of irrotational water waves 

in a three-dimensional basin with a rectangular cross-section are considered. A 
linearized analysis of this problem shows that there is a countably infinite set of linear 
eigenvalues or natural frequencies with associated eigenfunctions. The eigenvalues 
are strictly real (strictly imaginary in the usual terminology) owing to the Hamil- 
tonian nature of irrotational water waves. Therefore it is convenient to use the 
terminology and approach of equilibrium bifurcation theory, treating the natural 
frequency as the bifurcation parameter. Following this approach each of the linear 
eigenvalues is considered to be a point of bifurcation for the finite-amplitude solution. 
The solutions at the bifurcation points are periodic solutions, and finite-amplitude 
branches of periodic solutions emitted by these points are sought. 

Verma & Keller (1962) have used perturbation methods to determine the natural 
frequency and eigenfunctions for finite-amplitude periodic waves emitted by simple 
eigenvalues. However, in addition to the set of simple eigenvalues it is easily shown 
that there is a countably infinite set of double eigenvalues, triple eigenvalues, and 
quadruple eigenvalues. The bifurcation points with higher-dimensional null spaces 
are interesting because they generate a higher multiplicity of periodic solutions ; 
moreover, perturbation of the degenerate points may result in secondary branching 
at finite amplitude of new periodic solutions. 

The appearance of double eigenvalues or eigenvalues that are commensurate in 
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dynamics1 systems is often referred to as internal resonance. A typical example is 
the spherical pendulum analysed by Miles (1962) which has two degrees of freedom 
with equal linear natural frequencies. Miles's analysis of this problem shows that 
internal resonance results in a loss of stability and exchange of energy between the 
two modes. The exchange of energy breaks the periodic solutions and produces 
modulated periodic solutions. In this context Miles (1984a, b)  has analysed irrota- 
tional water waves in a basin with circular cross-section when a double eigenvalue 
occurs with a pair of linearly independent eigenfunctions. He showed that the flow 
of the amplitudes of the eigenfunctions corresponding to a double natural frequency 
is analogous to internal resonance of the spherical pendulum. Periodic solutions are 
found for specific initial conditions and instabilities leading to a slow exchange of 
energy and modulated amplitudes are found. 

It is shown herein that the qualitative results for waves in a rectangular basin under 
similar circumstances are quite different. An internal resonance in this case generates 
a higher multiplicity of periodic solutions which are stable, and apparently there is 
no exchange of energy between the two eigenfunctions. It was mentioned above that 
Miles showed that the internal resonance in the circular basin is analogous to the 
spherical pendulum. It is useful to construct a pendulum analogy for the waves in 
a basin of rectangular cross-section to help illustrate why the solutions in a circular 
and rectangular cross-section under similar circumstances are qualitatively different. 

Consider a right-handed three-dimensional coordinate system with the y-axis 
directed upwards and the x-axis directed to the right with a pendulum of mass m, 
and length 1, suspended from the origin with its motion restricted to the (2, y)-plane. 
Suspended from the pendulum mass m, is a second pendulum of mass m2 and length 
1, whose motion is restricted to the (y, 2)-plane. The natural frequencies of the two 
pendulums are equal when 1, = 1,. Under this circumstance one would expect the 
usual exchange of energy between the modes which occurs in other systems with 
internal resonance. However, based on the fact that the planes of motion are 
orthogonal, it may be shown that a higher multiplicity of periodic solutions are 
generated but they are stable and do not exchange energy. The analysis for this 
two-degree-of-freedom orthogonal planar pendulum will not be carried out here, but 
the result is equivariant to that shown in the results to follow. This pendulum model 
is analogous to what happens in the sloshing of fluid in a basin with a square 
cross-section when a double eigenvalue with a pair of orthogonal eigenfunctions 
occurs. This may be contrasted with the analysis of Miles on the basin with circular 
cross-section. There the symmetry of the circle plays an important role and the 
analogy is with the spherical pendulum. Because the two-degree-of-freedom spherical 
pendulum is less constrained than the two-degree-of-freedom orthogonal planar 
pendulum mentioned above, the class of solutions is larger, less stable, and even 
chaotic (Miles 19843). 

For the mathematical model a three-dimensional cylinder of rectangular cross- 
section partially filled with fluid is considered with the origin of the coordinate system 
at the still water level. The y-axis is normal to the still fluid surface and passes through 
the centre of the cross-section. Owing to the assumption of irrotationality the 
dependent variables are reduced to the velocity potential $(x, y, z ,  t )  and the wave 
height ~ ( x ,  z ,  t ) .  In dimensionless form the governing equation and boundary 
conditions are 

-- a' - 0 on solid boundary, 
an 
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and, on y = q ( x ,  z, t ) ,  

where 6 = a/b ,  2a is the vessel length in the x-direction, 26 is the vessel length in the 
z-direction; 6 = h/2a, where h is the vessel still water depth; E = H/h where H is a 
measure of the wave height. 

The linearized problem for (1.1 )-( 1.4) has eigenvalues (bifurcation points, linear 
natural frequencies) 

where 

The solutions for finite but small amplitude emitted by the simple linear eigenvalues 
have been found by Verma & Keller (1962) using a formal perturbation expansion. 
However, at  particular combinations of (m, n)  and 6 there are multiple eigenvalues. 
In $2 it is found that a set of eight solution branches are emitted by the double 
eigenvalues. A formal perturbation expansion analogous to the approach of Verma 
& Keller is used. 

By varying an auxiliary parameter (in this case 6) away from critical values the 
double eigenvalues are ‘split ’ into two simple eigenvalues. In an interesting discovery 
Bauer, Keller & Reiss (1975) observed that a secondary bifurcation may be generated 
when a double eigenvalue is split. A t  the double eigenvalue four branches are emitted 
in the half-plane E > 0 and the splitting process breaks this into two primary 
branches. The other two branches originating at the double eigenvalue slowly depart 
by creeping up a primary branch as 6 is varied away from a critical value. Bauer 
et al. developed a perturbation method to analyse this phenomenon and it has 
subsequently been applied to many equilibrium problems. For example Matkowsky , 
Putnick & Reiss (1980) have found secondary bifurcation in the buckling of 
rectangular plates, Kriegsmann & Reiss (1978) have found secondary bifurcation of 
magnetohydrodynamic equilibria, and the analysis has been extended to  the 
bifurcation from triple eigenvalues, which results in secondary and tertiary bifurca- 
tion, by Reiss (1983). 

In $3 this theory is applied to the splitting of double natural frequencies and it 
is shown that the splitting generates a secondary bifurcation of periodic solutions a t  
finite amplitude. The secondary bifurcation points for a perturbed square cross- 
section are found as functions of 6 and the mode numbers, and expressions for the 
solutions along the secondary branches are derived. It is found that the jump to a 
secondary branch produces interesting irregular wave forms. 

It is usual in the theory of water waves to consider three regions in the 
amplituddepth parameter space : E 4 6% is the deep-water or Stokes regime ; E >> 
is the shallow-water regime where the governing equations are analogous to those 
of a compressible gas and give rise to hydraulic jumps; and E = O ( P )  is the Boussinesq 
regime where the amplitude and dispersion are in balance (the ratio is often 
referred to as the Ursell number). The perturbation expansions of Verma & Keller, 
the finite-amplitude solutions found in $2 emitted by double eigenvalues, and the 
secondary bifurcation phenomena elucidated in $3 are valid in the Stokes regime 
only. It is shown that when E = O ( P )  the higher-order terms are no longer of higher 
order and the expansions break down. 

v,, = (A,, tanh A,, a)+, (1.5) 

A,, = n(m2+62n2)f. (1.6) 
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In $4 a separate analysis is performed in the Boussinesq regime by taking the small 
parameters E and s2 to be of equal order. As a first approximation weakly three- 
dimensional waves are considered. This is done by looking in the region of the 
(&6, €)-parameter space where the triple balance 

!g2 = O ( 4 ,  
62 = O ( € )  

holds. This analysis results in a, field of standing K-P waves, a set of two 
non-interacting (to first order) solutions of the K-P equation (Kadomtsev & 
Petviashvili 1970). The K-P equation, which is rich in solutions, has been studied 
in some detail by Dubrovin (1981) and Segur & Finkel (1985). As these solutions are 
qualitatively different from those found in the Stokes regime we say that the wave 
field changes type as the amplitude reaches 8 = O(S2). Since the analysis is for a 
particular region of the ( E ,  &)-plane the solutions are not contiguous to those derived 
in $12 and 3. 

The results with the K-P equations are for weakly three-dimensional waves. A 
further analysis is performed in $4 with this assumption relaxed. This analysis results 
in a wave equation to leading order. The solvability condition at the next order results 
in a functional differential equation for the leading-order term. A complete solution 
is not found, but it is shown by substitution that one solution is a set of four oblique, 
travelling cnoidal waves, which combine to form a three-dimensional standing wave. 
Distributions of the wave height are shown for these waves. It is expected that this 
equation will yield other interesting possibilities. 

2. Primary bifurcation when e < 0(a2) 

that has eigenvalues (linear natural frequencies) 
Linearizing the set of equations about the still water level results in a linear problem 

a. = (A,, tanh A,, S)! 

ql = cos am 5 cos /3, Z sin t ,  
and eigenfunctions 

4' = a,' cash ' m n ( y  + ') cos a, 2 cos p, z cos t ,  
cosh A,, 6 

where A,, = ( af+t2pn)t, a, = mx, /3, = nx, X = x+$, 5 = z+$, and m, n are the 
mode numbers in the (x, 2)-directions. 

The solutions that bifurcate from the linear eigenvalues (2.1) were first found by 
Verma & Keller (1962) using a perturbation expansion in the amplitude. They found 
that the natural frequency for the three-dimensional standing wave has the following 
form as e+O: 

where 



Three-dimensional standing waves in *finite depth 141 

Taking a, = p, = 1 and f [  = 1/L this agrees with the expression in the paper by 
Verma & Keller. The bifurcation for the frequency is subcritical or supercritical 
depending on the value of S. Here a subcritical (supercritical) branch means the 
natural frequency decreases (increases) as the amplitude increases. As &+ 00 (deep 
water) the bifurcation is subcritical and as S+O (shallow water) i t  is supercritical. 
Figure 2 of the paper by Verma & Keller shows, for the first mode, that as the vessel 
cross-section departs from being a square the critical depth S* (the point where the 
bifurcation changes from sub- to supercritical) increases. The same phenomenon 
occurs for the higher modes as well, with the critical depth being smaller as the mode 
number increases (for fixed f ; ) .  Consequently when a lower mode is supercritical it 
may be that a higher mode, with all other parameters being equal, may bifurcate 
subcritically, which suggests the possibility of an intersection of the branches a t  finite 
amplitude. 

It can be shown however that the asymptotic solution obtained by Verma & Keller 
is not uniformly valid. Taking the limit as S+O i t  is found that 

n2 k -+- 
no A&,P’ 

where k is a constant of O(1). Therefore the solution is valid for e < 0(a2) only. In 
94 the equations will be reanalysed for the region e = O(S2), and i t  will be shown tha t  
the solutions change type in this region. 

Inspection of (2 .1)  also shows that the linearized problem has double eigenvalues 
at  particular combinations of a,, Pn, and f;. When f ;  = 1 every pair (arn, p,) such 
that m =t= n is a double eigenvalue. Other examples are f [  = t which results in 
A,,* = A,,,, and f ;  = 1 which results in the triple eigenvalue A,,, = A5, = A,, ,. In fact 
every rational f; will have an infinite set of multiple eigenvalues. It will now be shown 
that the double eigenvalues emit multiple branches of solutions. For brevity the 
problem of a square vessel ( f ;  = 1) will be considered; it is expected that the analysis 
at other double eigenvalues will result in a similar conclusion. When f [ =  1 the 
bifurcation points occur at (2 .1)  with 

A,, = (a&+Pk)k (2 .6)  

Therefore any pair (m, n )  such that m =I= n will result in a double eigenvalue. The 
analysis proceeds by formally expanding the frequency, potential, and wave height 
in a regular perturbation series. The leading term in the frequency expansion is given 
by (2 .1)  with (2.6) and the leading term for each of the dependent variables is 

( 2 . 7 ~ )  7, = [A,, cosam5cosp,Z+A,, cosp,~cosa,Z] sint, 

coshA,,(y+&) 
cost. (2.7b) 

1 
n0 cosh A,, S 

4, = - [A, ,  cos a, 3 cosp, Z+ A,, cosp, 3 cos a, Z] 

A normalization for the coefficients is chosen such that 

The relative magnitudes of A,, and A,, are determined at higher order. 

after application of the double solvability condition at the third order: 
Proceeding in the usual way results in the following set of bifurcation equations 

[a, A;, + a, A:, + 2a2] A,, = 0 ,  

[a, A;, + a, A:, + 2n,] A,,  = 0, 

(2 .9a)  

(2.9b) 
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which along with (2.8) form a set of three equations for the three unknowns: g,, All,  
A,,. The coefficients a, and a2 are given by 

(2.11) 

The three equations (2.8) and (2.9) have the following set of eight solutions: 

Pure No. 1 :  A,, = 

(2.12) Pure No. 2:  A,, = 0, A,, = & 1,  at = -$,, 

1 1 
Mixed: A,, = *--, A,,  = *-, gF = -l 4@1+ a,) * 

d 2  d 2  

The pure modes correspond to the modes of the simple eigenvalues that coalesce to 
form the double point. They share the same natural frequency and are spatially 
(horizontally) symmetric. When the relevant parameters are substituted the ampli- 
tude correction to  the natural frequency crf = --& agrees with the correction found 
for the simple eigenvalues ((2.5) with 6 = 1) .  The other four solutions are mixed 
modes. The leading terms are proportional to the sum or difference of the two pure 
eigenfunctions. The amplitude correction of the frequency for the mixed-mode 
solutions gp differs from that for the pure modes by an  amount :(a,-a,). The 
bifurcation for either the pure or mixed modes will be sub- or supercritical depending 
on the value of 6. 

Figures 1 (a ,  b ,  c, d,  e )  are bifurcation diagrams for the natural frequency for the 
multiple eigenvalues occurring in a square cross-section with mode numbers m = 1 
and n = 2. The five frames show the effect of the parameter S on the behaviour of 
the solutions. Figure 1 (a)  corresponds to infinite depth and agrees with the result in 
Bridges (1987), where a more complete study of the infinite-depth case is given. The 
mixed branch apparently has a higher natural frequency for the range of amplitudes 
considered and for all values of the depth. The remainder of the figure 1 set correspond 
to decreasing values of 6. As 6 decreases the branches all shift to the right and 
eventually (at the critical depth S*) shift from sub- to supercritical. At 6 = 0.1275 
there is the interesting property that the pure branch bifurcates subcritically and the 
mixed branch bifurcates supercritically. 

In  Bridges (1987) distributions of the wave height for the pure branches and the 
mixed-mode branches for S+OO are shown. It is expected that, qualitatively, the 
distributions for finite 6 (and suitably restricted e )  will be similar. 
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FIGURE 1 .  Effect of 6 on the bifurcation from the double eigenvalues for 5 = 1 and (m, n) ranging 
over 1,2. The dashed lines correspond to the simple modes gl, (left branch) and u2, (right branch) 
and the solid lines are for pure (left branch) and mixed (right branch) modes emitted by the double 
point r ~ ~ , ~ ,  u ~ , ~ .  (a) S =  co; (b)  0.14; (c) 0.1275; ( d )  0.12; (e) 0.10. 

w 

In  contrast to the usual result for internal resonance where loss of stability and 
energy exchange occurs between the resonant modes it has been shown that, under 
the special circumstances inherent in this problem, a higher multiplicity of stable 
periodic solutions are found. Stability may be shown using a two-timing method. 
Define the slow scale T = tz2t and use the more general linear solution, which allows 
for a temporal phase, 

ql = f l l ( t ,  T )  c o s a m Z c o s p , ~ + f l , ( t ,  T )  ~ o s / 3 ~ Z c o s a ~ Z ,  (2.13) 
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where 
flk = A,,(T) eit + C.C. for k = 1 ,  2, (2.14) 

where C.C. denotes complex conjugate, and the Alk are complex amplitudes. Carrying 
this to third order in the usual way results in a modified set of bifurcation equations 

( 2 . 1 5 ~ )  

(2.15b) 

where y is a real number. Taking Alk = Rlk(T) ei@lk(T) for k = 1 ,  2 it is clear that 
dRlk/dT = 0 for k = 1,  2 implying stability of each branch of free oscillations. 

3. Secondary bifurcation when e < O ( P )  
In  this section new secondary branches of periodic solutions, which intersect a 

primary branch emitted by a simple eigenvalue, at finite amplitude, are sought. 
Therefore a perturbation 

$ = €’@+4’, (3.1 a )  

r = e’Y+r’ (3.1 b) 

is added to the known primary-branch solutions (@, Y, w )  found by Verma & Keller. 
These expressions are substituted into the governing equations and boundary 
conditions, which are then linearized about the known primary-branch solutions. The 
linear problem to be solved for the points, if they exist, of secondary bifurcation is 

and 

+--+-- +r’= 0,  w - + d  -- 1 am41 a@a$’ am41 
[ ax ax ay ay a Z  a Z  at (3.4) 

and in addition the normal derivative is required to vanish on the solid boundary. 
This is a linear differential eigenvalue problem with known non-constant coefficients. 
However, the specific value of E’ where the secondary bifurcation takes place is 
sought. Therefore e‘ is the eigenvalue. Since E‘ appears nonlinearly i t  is a problem 
nonlinear in the eigenvalue parameter and there is the further complication that d 
is responsible for the size of the domain. The qualitative shape of the domain is known 
since Y(x, z,  t )  is a known function, but the precise multiple of Y(x, z ,  t )  is the unknown 
eigenvalue. This is to be contrasted with the original eigenvalue problem in $2 where 
w was the eigenvalue, e’ was a variable parameter, and the shape of the free surface 
(and hence the domain) was an unknown function. 

To solve this eigenvalue problem, the conjecture of Bauer et al. (1975), that a 
secondary bifurcation may occur in the neighbourhood of a multiple eigenvalue, is 
used. For brevity, the analysis is undertaken in the neighbourhood of fl  = 1. It is 
expected that a similar analysis will hold in the neighbourhood of other values of 6 
at which double eigenvalues occur. 
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It was shown in $2 that for 5 = 1 there is a double eigenvalue for every pair (m, n)  
such that m + n. At the double eigenvalue the bifurcation points are given by (2.1) 
with (2.6). In the neighbourhood of E = 1 this double eigenvalue splits into two 
primary branches emitted by the bifurcation points. 

urn, n(?I ,  E )  = {n(m2 + E2n2)t tanh [nc?(m2 + f;2n2)t]}i, 

un, ,(?I, E )  = {n(n2 + E2m2): tanh [n6(n2 + E2m2)i]}i, 

(3.5) 

(3.6) 

where urn, n(?I ,  1) = un, ,(?I, 1). A measure of the neighbourhood of E = 1 is given by 
the small parameter p defined by 

(3.7) 

Following the conjecture of Bauer et al. that the secondary bifurcation disappears 
at the double eigenvalue, the point d on the primary branches where the secondary 
bifurcation will take place is expressed as 

5 = 1 +$p2 where 7 = sgn (5- 1) = f 1. 

e'@) = bop+b,,u2+ .... (3.8) 

The solutions previously obtained by Verma t Keller for the primary branches 
emitted by simple eigenvalues are recast, using (3.7)-(3.9), as expansions in the small 
parameter p, 

@ = $,+p$,+...  , (3.94 

Y =  Yo+pY,+ ..., (3.9b) 

w = w0+p2w,+ ... . (3.10) 

A separate analysis is undertaken for each of the primary branches umn and unm. 
The necessary details for the analysis along the umn branch will be given and the 
result only will be stated for the unm branch. 

Substitute the expressions (3.7)-(3.10) into the linear eigenvalue problem and 
postulate that 

$6! = pq5;+p2$69;+ ... , (3.11~) 

7' =py;+p2r];+ ... . (3.11 b) 

Expanding the free-surface boundary conditions in a Taylor series, and equating 
terms proportional to like powers of ,u to zero results in a sequence of boundary-value 
problems. The fact that w, is a double eigenvalue results in the leading term in 
the set 

where 
wo = (A, tanhA,?I$, 

A, = n(m2+n2)1, 

(3.12) 

(3.13) 

&(z, 2, t )  = [A,, cosam~cos/3,~+A,,  c 0 ~ / 3 ~ ~ c o s a , ~  sint, (3.14) 

1 coshA,(y+S) 
wo coshA,S $6;(z, Y, z,  t )  = - [A,, cos a, Z cos/3, i+ A,, cos /3,Z cos a, Z ]  cost, 

(3.15) 

and the normalization is taken to be 

A?,+A?, = 1. (3.16) 
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The problem is carried in the usual way to  higher order. At third order application 
of the double solvability condition results in the equations 

bi A,, = 0, (3.17) 

(3.18) 

which with (3.16) form a set of three equations for the three unknowns b,, A,,, and 
Alz. The term a3 is given by 

( 3 4  +At  - 4a2,)2 (3w: + A: - 4/39, + 32w:(am tanh 2am 13-24) 32w;(Bn tanh 2Pn 8 - 2 4 )  
+ 

[wt  - A 3  [a@: - A;] - 
8wi{ - 4 4  + 1/2A, tanh [1/2A, 81) * 

(3.19) 

For sufficiently large 8 it has been shown by numerical evaluation for m, n ranging 
over 1 to 10 that the expression for a3 is positive. In  the limit as 8+0 however 
a3 -+ - &A: Therefore as 8 -+ 0, a3 will eventually become negative. For example 
when (m, n) = (1,2),  a, changes sign when 6 - 0.075. When a3 changes sign this 
means that the secondary bifurcation will 'jump ' from one branch to another, which 
would be a discontinuous phenomenon. It is more likely that this behaviour is a 
ramification of the non-uniformity in 8 of the solution. 

The solutions to (3.16)-(3.18) are 

Case I :  b, = 0, A,, = 1 ,  A , , = O ;  ( 3 . 2 0 ~ )  

Case 11: b, = & A,,  = 0, A,, = 1. (3.20b) 

The solution in ( 3 . 2 0 ~ )  shows that the basic solution bifurcates from the primary 
branch. In  (3.20b) the solution for the secondary bifurcation on branch umn is given. 
The +_ sign shows that the bifurcation takes place in both the upper and lower B 

half-planes. The jump to the A,, + 0 solution is often referred to  as mode jumping 
because the solution acquired on the secondary branch is qualitatively different from 
that on the primary branch. The radical in (3.20b), when u3 > 0, requires that 
(a,,, -Bn) T < 0 for secondary bifurcation to occur on branch umn. 

A similar analysis for the unm branch results in the bifurcation equations 

(3.21 a )  

b i  A,, = 0, (3.21 b )  

which gives the points of secondary bifurcation on that branch. For convenience 
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to define em, 
be the point on the vnm branch. Then 

to be the point of secondary bifurcation on the vmn branch and en, 

( 3 . 2 2 ~ )  

(3.22 b )  

Retaining the branch for E > 0 only for brevity the bifurcation equations on each 
branch show that 

( 3 . 2 3 ~ )  

(3.23 b )  

A secondary bifurcation takes place on one, and only one at  a time, branch. Noting 
that T = sgn (6- 1) the branch on which the secondary bifurcation takes place is given 
in table 1. 

6-1 (a,-pn) Branch 

+ + (n, 4 
(m n) 

+ (m, 4 
(n, 4 

- + 
- 
- - 

TABLE 1 .  The branch on which secondary bifurcation takes place 

In summary, as 6 departs from 6 = 1, the split primary bifurcation points given 
by (3.5), (3.6) move away from the double point. When 6 > 1 they both move to the 
right and when 6 c 1 they both move to the left. However in all four cases given 
in the table the secondary bifurcation takes place on the branch which is emitted, 
after splitting, by the largest, in magnitude, of the two bifurcation points, regardless 
of the sign of T .  

It has been shown that in the neighbourhood of a square cross-section (6 = 1) a 
secondary bifurcation will occur on one of the two branches emitted from the simple 
eigenvalues which result from the splitting of the double eigenvalues. By expanding 
in the neighbourhood of this point an asymptotic representation of the solution along 
the secondary branch may be found. A small parameter v is defined as a measure of 
the distance from the point of secondary bifurcation. It is assumed that the 
parameters are such that the secondary bifurcation point occurs on the urn, branch. 
A similar analysis may be performed for a bifurcation from the vnn branch. 

A perturbation is added to the known primary-branch solution 

(b = s@+(b’, 7 = €Y+7’, w = u+a, (3.24a,  b ,  c )  

and the unknown solutions on the secondary branch are expressed as a regular 
perturbation series in v and p 

4’ = V(cL(bll +p2(b12 + . . .) + v”#2, +p2(b22 + . . .) + . . . , (3.25) 

7’ = v(rU?),, +p2q12 + . . .) + v2(pq2, +p2722 + . . .) + . . . , (3.26) 

SZ = ~ ( ~ , ~ + p u S 2 , , + p ~ 9 , ~ +  ...)+ v ~ ( S Z ~ ~ + ~ R ~ ~ + ~ ~ ~ ~ ~ +  ...)+... . (3.27) 

The substitution of expressions (3.24)-(3.27) into the governing equations and 
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boundary conditions results in a set of boundary-value problems for the unknowns 
$ f j  and qzj.  The analysis although straightforward is lengthy and the details will be 
omitted. 

The problem of first order in v results in Q,, = 0 for all j and 

1 cosh A,(y + 6) 
$ =- cos P, Z cos a, 2 cost, 

w, coshh,S 11 (3.28 a )  

qll  = cos 8, Z cos a, 5 sin t ,  (3.283) 

and the higher-order terms (in v )  are omitted for brevity. The problem of order v2 
results in SZ,, = SZ,, = 0, $21 = qzl = 0, and 

[ 3 4  -hi + 4a, /?,I2 
+32w:[4w:-1/2[am-/3,) t m h  (1/2(a,-Pn) S)] 

(3.29) 

and the other higher-order terms are omitted. The result (3.29) provides an expression 
for the frequency along the secondary branches. The complete expression for the 
natural frequency in the neighbourhood of the double eigenvalue is 

(3.30) 

Since is proportional to  quadratic terms the sign of SZ,, determines whether the 
bifurcation is sub- or supercritical. Although no proof has been undertaken the 
following points regarding the sign [SZ,,] are made based on numerical evaluation of 
(3.29). As S+ 00 the sign [SZ,,] < 0 for all mode numbers. As 6 is decreased a critical 
value of8 is reached where SZ,, changes sign and this critical value differs for different 
mode numbers. For example when (m, n) = (1 ,2 ) ,  SZ,, changes sign from + to - 
when 6 - 0.1155 resulting in a shift of the secondary bifurcation from sub- to  
supercritical. Since the critical value of S on the primary branch is slightly different 
from the critical value for the secondary branch there is a small range of S where the 
primary branch is supercritical and the secondary branch is subcritical. 

Figures 2 (a,  b,  c, d, e )  give an  illustration of the secondary bifurcation phenomena 
for various S when (m, n) = (1 ,  2). Figure 1 (a )  for 6 = 0.20 is similar to the 
infinite-depth result obtained in Bridges (1987). The remainder of the sequence in 
figure 2 shows the shifting of the branches to  the right as 6 is decreased. I n  figure 
2(d) the secondary bifurcation is almost vertical as SZ,, - 0 here, and in figure 2(e) 
the secondary bifurcation has shifted to supercritical. An example of the distribution 
of the wave height (for S+ 00) as the solution shifts from the primary t o  the secondary 
branch is shown in Bridges (1987). The wave field becomes more complex as the 
solution on the secondary branch is acquired. The addition of the finite depth is not 
expected to  significantly alter qualitatively this distribution for suitably restricted 
amplitude. 

Recall that the solutions discussed here are periodic free oscillations. In other words 
we seek the particular spatial distributions of the wave height, for example, which 
after an evolution in time of (normalized) period 2n will agree with the initial 
condition at each point in space. Therefore, physically, the secondary branches are 
merely additional, albeit more complex, families of solutions that satisfy this 

= wo +p2w2 + p V 2 ~ , ,  + ob3, v3). 



Three-dimensional standing waves in  jinite depth 149 

FIGURE 2. Effect of 8 on the secondary bifurcation when (m, n) = (2, 1 )  and 6 = 2. After the 
splitting the secondary bifurcation occurs on the u ~ , , ~  branch. As S is decreased the primary and 
then the secondary bifurcation shifts from sub- to supercritical. (a) S = 0.20; ( b )  0.16; (c) 0.15, (d )  
0.115; (e) 0.10. 

property. The idea that the solutions are stable implies that the modes A,, and A,, 
do not exchange energy. 

4. Change of type when E = O(S2) 
The solutions obtained in 992 end 3 are not uniformly valid in the ( E ,  @-plane. The 

higher-order terms are no longer of higher order in the Boussinesq regime where 
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E = O(S2). Therefore in this section a separate analysis is performed for that region 
of the (8 ,  &)-plane where E = O(62). This is done by taking 6 = (7e)t where T = 0(1) 
and carries the sign of E (and is different from the 7 used in $3). The governing 
equations are (1.1 )-( 1.4) but with the scaling modified so that S appears explicitly 
in the equation (y is scaled with h instead of 2a). With this scaling the linear natural 
frequency has a finite non-zero limit as &+O.  

Before proceeding to the fully three-dimensional problem it is useful to analyse 
weakly three-dimensional waves by (following Ablowitz 6 Segur 1979) considering 
the region of parameter space where E2 = O(c) ,  or 

= (ye):, 6 = (TE)i, (4.1) 

where y = 0(1) and carries the sign of e. When the relations (4.1) are substituted into 
the governing equations and boundary conditions and a regular expansion in e is 
sought the leading-order problem is a wave equation 

D$&, 2 ,  t )  = 0, 
where D is the D'Alembertian 

With the additional requirement that a$o/an vanish on the vertical boundaries, (4.2) 
has the general solution 

WO = am, (4.4) 

(4.5) 

where a,,, = mn, 6 = t + am 2, x = t - a,,, 5, and 2 = x +a. The leading-order wave 
height is 

$o(x, 2,  t )  = A 6  2) + f ( x ,  4,  

(4.6) 
a a 
ac ax To(", 2 ,  t )  = -wo[ - f ( c>  z)+-f(x, 41; 

the unknown function f is found through application of the solvability condition at 
the next order. The first-order problem is 

D$l = F,(G 2 ,  t ) ,  (4.7) 

where Fl is a functional of zeroth-order terms. Solvability of (4.7) requires that 

J:" F [b, 2a, z, m] 2 dg = 0. 

This condition is derived in Bridges (1986). Application of (4.8) results in a partial 
differential equation for f: 

When y = 0 the equation for f can be integrated to yield 

f ' ( x )  = A + B  cn2(X;K) (4.10) 

(where A and B are constants), the usual cnoidal wave, and subsequent substitution 
into (4.5) results in a standing cnoidal wave (Bridges 1986). With the retention of 
the a'-f/3z2 term (4.10) is a form of the K-P equation. The K-P equation was first 
derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary 
waves to transverse perturbations. A discussion and analysis of this equation can be 
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found in Ablowitz & Segur (1979). Dubrovin (1981) and Segur & Finkel (1985) have 
shown that this equation is rich in the number of qualitatively different types of 
solutions that may be produced. Here the right and left running solutions of the K-P 
equation would be combined to form a weakly three-dimensional standing wave. 

Instead of analysing this equation and its possibilities further an analysis with 
unrestricted will be undertaken. With 5 unrestricted and 6 = (re)$ a regular pertur- 
bation expansion in e is assumed. Substitution into the governing equations and 
boundary conditions results in a wave equation in two space dimensions at leading 
order : 

0;-- a2@o A@,, = 0, 
a t 2  

(4.11) 

where 

(4.12) 

and it is required that the normal derivative of @o vanish at the vertical boundaries. 
The leading-order wave height is given by 

a 2  a2  

ax2 a22 
A G -+E2- 

The first-order problem results in 

0 4  a 
4-- l -  3 at 

a2'1 A@ - A-G1(x, z, t ) ,  

(4.13) 

(4.14) 

where 

For solvability it is required that 

J' -l -$ 
%Gl(x, Z, t )  dxdz dt = 0. (4.16) 

The function @o(x, z, t)  which satisfies this functional differential equation is the 
leading-order term for three-dimensional standing waves in a rectangular basin when 
E = 0(J2). A general solution to (4.16) has not been found. However it may be shown 
by substitution that with 

(4.17) 

one possible expression for the leading-order wave height which satisfies (4.16) is 

q0(x,  Z, t )  = h(t + 01, Z + /3,Z) + h(t - 01, Z- /3, Z) + h( t - 01, Z + 8, E )  

+h( t+a ,  Z-/?,Z), (4.18) 

where 

and 
h@) = A+Bcn2(p;K), (4.19) 

(4.20) 

B = ~K'TW; (4.21) 
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FIGURE 3. A three-dimensional cnoidal standing wave for ( a )  (m, m) = (1, 1) ;  ( b )  (1, 2); 
( c )  (2, 2), t = 0. 

where E(n;  K ) ,  and en ( p ;  K )  are Jacobian elliptic functions (Byrd & Friedman 1971). 
Periodicity in time and the finite domain require that K ~ ,  the modulus of the elliptic 

(4.22) 

A numerical evaluation shows that K~ - 0.9691. 
Therefore a solution of (4.16) is a set of four oblique, travelling, non-interacting 

(to leading order) cnoidal waves which when combined result in a nonlinear 
three-dimensional standing cnoidal wave. It is also illuminating to  note that the wave 
height (4.18) may be expressed as the infinite sum 

m 

q0(x ,  z ,  t )  = k, C pa, cospa, Z cospp, 5 cospt, (4.23) 
P - 1  

where k, is a constant and 

(4.24 a )  

(4.24b) 

and q = exp [ - K($ ; (1 - K ~ ) ; ) ] .  
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Examples of the three-dimensional cnoidal standing waves are given in figure 
3(a, b, c). Figure 3(a) is a (m, n) = (1, 1 )  mode a t  t = 0, figure 3(b) is a (m,  n)  = (1 ,  2) 
mode at t = 0, and figure 3(c) is a (m, n )  = (2, 2) mode at t = 0. These figures give a 
prelude to the richness that is possible when a complete solution of (4.16) is found. 
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